
Better than the Best: Gradient-based Improper
Reinforcement Learning for Network Scheduling

Mohammadi Zaki, Avi Mohan, Aditya Gopalan and Shie Mannor

ABSTRACT
We consider the problem of scheduling in constrained queue-
ing networks with a view to minimizing packet delay. We
formulate a novel top down approach to scheduling where,
given an unknown network and a set of scheduling policies,
we use a policy gradient based reinforcement learning algo-
rithm that produces a scheduler that performs better than
the available atomic policies. We derive convergence results
and analyze finite time performance of the algorithm. Sim-
ulation results show that the algorithm performs well even
when the arrival rates are nonstationary and can stabilize
the system even when the constituent policies are unstable.
Link to paper: https://arxiv.org/pdf/2102.08201.pdf

1. INTRODUCTION
The design of communication networks has traditionally in-

volved fine-grained modeling of traffic and network character-
istics, followed by devising scheduling and routing protocols
optimized for the models. This constituted a “bottom-up”
approach, with resource allocation algorithms being tightly
coupled to network model assumptions, and worked very
well with the relatively simple requirements of yesteryear
networks comprising mostly homogeneous traffic sources. It
has yielded a readily available storehouse of design principles
and rules of thumb that can be used to generate with little
effort, a menu of schedulers with desirable properties, e.g.,
MaxWeight and variants [5, 3].

Modern communication systems, on the other hand, are
becoming increasingly complex, and are required to handle
multiple types of traffic with widely varying characteristics
(such as arrival rates and service times). This, coupled with
the need for rapid network deployment, render such a granu-
lar model-based and bottom-up approach infeasible. At the
same time, we would prefer to retain the favorable principles
underlying the design of existing scheduling algorithms and
not give them up altogether. In this regard, this paper advo-
cates a novel “top-down” approach to designing effective and
adaptable scheduling strategies, in which, given an unknown
network and a set of scheduling policies, we aim to learn a
scheduler that is either better than all the atomic policies or
as good as the best atomic policy (which is a priori unknown
for the network setting at hand). We achieve this using
a gradient-based optimization algorithm over an improper
mixture class of policies constructed using the given base

Copyright is held by author/owner(s).

controllers. We employ tools from recent analyses of policy
gradient methods to derive convergence results and analyze
finite-time performance of the proposed algorithm in this new
setting. Simulation results show that the algorithm performs
well even when the arrival rates are nonstationary, and can
stabilize the system even when the constituent policies are
unstable.

Related work is discussed in detail in Sec. 1.1 of our tech
report [6] and is omitted here due to paucity of space.

2. SYSTEM SETTING
To describe our approach in detail, we focus on the well-

known setting of a single server attending to N queues in
discrete time, where for example, each queue models packets
waiting on a communication link. We note, however, that our
algorithmic framework applies more generally to policy opti-
mization for any Markov decision process (MDP), including
one with continuous state/action spaces, as long as a set of
policies is given for it (please refer to [6] for the complete for-
mulation). The server decides which queues are to be sched-
uled for service in each slot, based on service constraints (e.g.,
at most 1 queue to be scheduled each time). The indicator
random variable Di(t) denotes whether queue i is scheduled
in slot t or not. For concreteness, we also assume (1) IID
Bernoulli(λi) arrivals {Ai(t)}t∈N to each queue i, (2) deter-
ministic, single-packet service for each queue when scheduled,
and (3) a scheduling constraint of at most 1 queue per time
slot. Note, however, that our policy optimization approach
extends to general arrival processes or interference graphs
(i.e., scheduling constraints). Hence, the queue lengths evolve
as Qi(t+ 1) = (Qi(t)−Di(t))+ +Ai(t+ 1), i ∈ [N], t ∈ N,
where (x)+ := max{0, x}, ∀ x ∈ R. Note that the arrival
rates λ = [λ1, · · · , λN] are a priori unknown to the sched-
uler/learner. The learner (i.e., scheduling algorithm at the
server) needs to decide which of the N queues it intends to
serve in a given slot. The server’s decision at each slot can
be denoted by the vector D(t) = (Di(t))i∈N taking values in
the action space A := {[0, · · · , 0], [1, 0, · · · , 0], [0, 0, · · · , 1]} ,
where a “1” denotes service and a “0” denotes lack thereof.

Let Ht denote the state-action history (historical trajec-
tory) until time t, and P(A) the space of all probability
distributions on A. We aim to find a policy π = [π1, π2, · · ·],
where πt : Ht → P (A), to minimize the ∞-horizon dis-
counted system backlog given by

Jπ(q) := Eπ
[
∞∑
t=0

γt
N∑
i=1

Qi(t)
∣∣ Q(0) = q

]
. (1)

https://arxiv.org/pdf/2102.08201.pdf

Note that we are using system backlogs (queue lengths) as a
proxy for packet delays as is commonly done; a more finer per-
formance criterion involving the actual packet delays can also
be optimized if the MDP is suitably redefined. Any policy
π with Jπ(Q(0)) <∞, ∀Q(0) ∈ Z2

+ is said to be stabilizing
(or, equivalently, a stable policy). The capacity region [5] of

this network can be seen to be
{
λ ∈ RN+ |

∑
i∈[N] λi < 1

}
.

This problem can be viewed as one of finding an∞-horizon,
γ-discounted reward optimal policy in the MDP with state
space S = NN , i.e., all possible values of the queue lengths
Q(t) ≡ (Qi(t))i∈N , action space P(A), single stage reward

r(Q(t),D(t)) = −
∑N
i=1Qi(t), and an appropriately defined

probability transition kernel P following the Bernoulli arrival
process [6]. In keeping with standard reinforcement learning
parlance, we will refer to the negative discounted system
backlog −Jπ(·) as the value function V π (·) of policy π, to
be maximized over policies π. Moreover, due to the Markov
nature of the system, we consider only policies that depend
on the current state, i.e., πt : Q(t)→ P(A).

Improper Learning. We assume that we are provided
with a finite number of controllers/policies C := {K1, · · · ,KM}.
We aim to identify the best policy for the given queueing
network within a class, i.e.,

π∗ = argmin
π∈Isoft(C)

V π(ρ), (2)

where Isoft(C) is a parameterized, improper, policy class
that we define as follows.

The Softmax Policy Class. Each policy in the soft-
max policy class Isoft(C) is parameterized by weights θ :=
[θ1, · · · , θM] ∈ RM . The policy πθ ∈ Isoft(C), given a state
s ∈ S, plays an action by (a) first choosing a controller
drawn from softmax(θ), i.e., the probability of choosing
controller Km is given by,

πθ(m) :=
eθm

M∑
m′=1

eθm′
, (3)

and (b) then choosing an action by applying the sampled
controller at the state s. Note, therefore, that in every round,
our algorithm decides which action to apply only through
the controller sampled in the first step of that round. In
the rest of the paper, we will deal exclusively with a fixed
base policy class C and the resultant Isoft(C). We use the
notation πθ(a|s) for any a ∈ A and s ∈ S to denote the
probability with which the softmax policy πθ, as defined
above, chooses action a in state s. Hence, we have that for
any θ ∈ Rm,

πθ(a|s) =

M∑
m=1

πθ(m)Km(s, a), (4)

where Km(s, a) is the probability with which the policy
Km plays a in state s. Since we deal with gradient-based
methods in the sequel, we define the value gradient of policy
πθ ∈ Isoft, by ∇θV πθ .

3. SCHEDULING VIA POLICY GRADIENTS
The Policy Gradient Approach. The Policy Gradient

(PG) method has, following stunning success with applica-
tions such as game playing, has become a cornerstone of
reinforcement learning [4]. In general, PG methods involve

Algorithm 1 Softmax Policy Gradient (SoftMax PG)

Input: learning rate η > 0, initial state distribution µ
Initialize each θ1m = 1, for all m ∈ [M], s1 ∼ µ
for t = 1 to T do

Choose controller mt ∼ πt.
Play action at ∼ Kmt(st, :).
Observe st+1 ∼ P(.|st, at).
Update: θt+1 = θt + η.∇θtV πθt .

end for

parameterizing the control policy and optimizing the param-
eter using a gradient ascent algorithm of the form

θt+1 = θt + η∇θtV
πθt (5)

When the value function and its gradient are computable in
closed form, we propose an algorithm, SoftMax PG, that prov-
ably converges to the best parameter, θ∗, within Isoft(C).

3.1 Convergence of SoftMax PG
For a given policy π and initial state distribution µ, the

quantity dπµ(·) := EQ0∼µ

[
(1− γ)

∞∑
t=0

P
[
Qt = ·

∣∣ Qo, π, P
]]

,

defines a distribution over S, called the discounted state
visitation measure.

Theorem 3.1 (Rate of Convergence). Let |S × A| <
∞, Q(0) ∼ µ and assume that the scheduler is provided with
M stationary controllers. With {θt}t>1 generated as in Al-

gorithm 1 and using a learning rate η = (1−γ)2
7γ2+4γ+5

, for all
t > 1,

V πθt (ρ)− V π
∗
(ρ) 6

1

t
M

(
7γ2 + 4γ + 5

c2(1− γ)3

)∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
2

∞

∥∥∥∥ 1

µ

∥∥∥∥
∞
.

Here, c = inft>1 min{πθt(m) : m ∈ [M], π∗(m) > 0} is the
minimum probability that Algorithm 1 puts on the controllers
on which the best mixture π∗ is supported.

3.2 Estimating Value Gradients
In most RL problems, neither value functions nor value

gradients are available in closed-form. To expanding the
applicability of SoftMax PG to such situations, we propose
a gradient estimation subroutine called GradEst (Algorithm
2). This uses a combination of (1) rollouts to estimate the
value of the current (improper) policy and (2) a stochastic
perturbation-based approach to estimate its value gradient.

Specifically, in order to estimate the value gradient, we use
the approach of Flaxman et al [1], noting that for V : RM →
R, the gradient∇V (θ) ≈ E [(V (θ + α.u)− V (θ))u] .M

α
. where

α ∈ (0, 1). If u is chosen to be uniformly random on unit
sphere, the second term is zero, i.e.,
E [(V (θ + αu)− V (θ))u] .M

α
= E [(V (θ + αu))u] .M

α
.

The expression above requires evaluation of the value
function at the point (θ + α.u). Since the value function
may not be explicitly computable, we employ rollouts for its
evaluation.

4. EXPERIMENTS
In this section, we show the efficacy of our policy gradient

algorithm through simulations in multiple scenarios. We

(a) λ = (0.49, 0.49), C =
{‘always serve 1’, ‘always serve 2’}

(b) λ = (0.3, 0.4), C =
{‘always serve 1’, ‘always serve 2’}

(c) λ = (0.3, 0.4), C =
{‘serve 1’, ‘serve 2’, LQF}

(d) Expected discounted queue
length cost for 1c

Figure 1: Softmax policy gradient with gradient estimation finds the best mixture policy for various base policies in a 2-queue network.

Algorithm 2 GradEst

Input: Policy parameters θ, parameter α > 0.
for i = 1 to #runs do
ui ∼ Unif(SM−1).
θα = θ + α.ui

πα = softmax(θα)
for l = 1 to #rollouts do

Generate trajectory according to the policy πα :
(s0, a0, r0, s1, a1, r1, . . . , slt, alt, rlt)

reward(l) =
lt∑
j=0

γjrj

end for
mr(i) = mean(reward)

end for

GradValue = 1
#runs

#runs∑
i=1

mr(i).ui.M
α
.

return GradValue

study the performance of softmax PG with gradient esti-
mation (GradEst) over two different settings: (1) when the
packet arrival rates, and therefore the optimal controller,
are fixed and (2) where they are time varying. In all our
experiments, we consider a system with N = 2 queues and
a fully connected interference graph. We provide all details
about hyperparameters in [6, Sec. E].

4.1 Constant Arrival Rates
In this case, we first simulate a network where the the

optimal policy (πθ∗) is a strict improper combination of
the available controllers and later, a network where it is
at a corner point, i.e., one of the available controllers itself
is optimal. Our simulations show that in both the cases,
softmax PG converges to the correct controller distribution
in Isoft.

The scheduler is given two base/atomic controllers C :=
{K1,K2}, i.e. M = 2. Controller Ki serves Queue i with
probability 1, i = 1, 2. As can be seen in Fig. 1a when
λ = [0.49, 0.49], softmax PG converges to the improper
mixture policy that serves each queue independently with
probability [0.5, 0.5], which is the delay-optimal controller
in Isoft(C). Interestingly, the mixture stabilizes the system
whereas both base controllers lead to instability because of
insufficient service to some queue. Fig. 1b shows that with
unequal arrival rates too, Softmax-PG with GradEst quickly
converges to the correct improper combination.

Fig. 1d shows the evolution of the value function (system
backlog) of GradEst (blue) compared with those of the base

0 5000 10000 15000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2: Plot showing that GradEst adapts to varying arrival
rates over time.

controllers (red) and the Longest Queue First policy (LQF)
which, as the name suggests, always serves the longest queue
in the system (black). LQF, like any work-conserving policy,
is known to be delay optimal [2].

Finally, Fig. 1c shows the result of the second experimental
setting with three atomic controllers, one of which is delay
optimal. The first two are K1,K2 as before and the third
controller, K3, is LQF. Notice that K1,K2 are both queue
length-agnostic, meaning they could attempt to serve empty
queues as well. LQF, on the other hand, always and only
serves nonempty queues. Hence, in this case the optimal
policy is attained at one of the corner points, i.e., [0, 0, 1].
The plot shows the GradEst converging to the correct point
on the simplex.

4.2 Time-varying Arrival Rates
We consider a modification to the system in Sec. 6 wherein

the arrival rates λ to the two queues vary over time (adversar-
ially). In particular, λ varies from (0.3, 0.6)→ (0.6, 0.3)→
(0.49, 0.49). Our PG algorithm successfully tracks this change
and adapts to the optimal improper stationary policies in
each case as shown in Fig. 2. In all three cases a mixed
controller is optimal, and is successfully tracked by our PG
algorithm.

5. CONCLUSION
Our results show that our new improper learning algorith-

mic framework is able to efficiently learn optimal mixtures of
given policies. This paves the way for (a) building more re-
fined theory towards understanding the convergence behavior
of such schemes, and (b) benchmarking it more extensively
in diverse RL settings including problems of robotic control,
computer game playing, etc. This will form the subject of
future work.

6. REFERENCES
[1] Flaxman, A. D., Kalai, A. T., and McMahan,

H. B. Online convex optimization in the bandit setting:
Gradient descent without a gradient. SODA ’05, Society
for Industrial and Applied Mathematics, p. 385–394.

[2] Mohan, A., Chattopadhyay, A., and Kumar, A.
Hybrid MAC protocols for low-delay scheduling. In 2016
IEEE 13th International Conference on Mobile Ad Hoc
and Sensor Systems (MASS) (Los Alamitos, CA, USA,
oct 2016), IEEE Computer Society, pp. 47–55.

[3] Shakkottai, S., and Stolyar, A. L. Scheduling for
multiple flows sharing a time-varying channel: The
exponential rule. Translations of the American
Mathematical Society-Series 2 207 (2002), 185–202.

[4] Sutton, R. S., and Barto, A. G. Reinforcement
learning: An introduction. MIT press, 2018.

[5] Tassiulas, L., and Ephremides, A. Stability
properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop
radio networks. IEEE Transactions on Automatic
Control 37, 12 (1992), 1936–1948.

[6] Zaki, M., Mohan, A., Gopalan, A., and Mannor, S.
Improper learning with gradient-based policy
optimization. arXiv preprint arXiv:2102.08201 (2021).

	Introduction
	System Setting
	Scheduling via Policy Gradients
	Convergence of SoftMax PG
	Estimating Value Gradients

	Experiments
	Constant Arrival Rates
	Time-varying Arrival Rates

	Conclusion
	References

