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ABSTRACT
We consider a large number of agents collaborating on a
multi-armed bandit problem with a large number of arms.
We present an algorithm which improves upon the Gossip-
Insert-Eliminate method of Chawla et al. [3]. We provide a
regret bound which shows that our algorithm is asymptot-
ically optimal and present empirical results demonstrating
lower regret on simulated data.

1. INTRODUCTION
The classical stochastic multi-armed bandit problem is

specified by a collection of probability distributions {Pk}Kk=1,
commonly referred to as arms. There is a single agent which
plays an arm It in [K] := {1, . . . ,K} at each time step
t ∈ [T ] and receives an associated reward Xt ∼ PIt . The
agent’s goal is to minimise the expected regret E[RT ] =

Tµ∗−
∑T
t=1 E[Xt], where µ∗ is the largest mean of the arms.

The agent’s decisions must be made using only the knowl-
edge acquired from previous actions and observed rewards.
A fundamental lower bound on the regret incurred by any
bandit algorithm is proved in [7].

Motivated by applications in distributed computing, we
consider a collection of agents collaborating on a multi-
armed bandit problem [11, 3]. Agents may communicate
with one another, and an agent’s decision of which arm to
play is made using information derived both from their own
reward history, and from the sequence of messages received
from other agents. However, communication between agents
is tightly restricted as described in Section 2. Specifically,
time is divided into growing phases and each agent may re-
ceive only one message per phase. Furthermore, a message
is limited to recommending the id of a single arm; no addi-
tional information may be exchanged. We show in Theorem
3.1 that, even with these restrictions on communication, it
is possible to asymptotically match the optimal total regret
achievable with unlimited communication.

There has recently been growing interest in multi-agent
bandits. A setting in which agents communicate with a cen-
tral node is considered in [6], while [12, 2, 10, 4] consider
settings where agents can communicate rewards (not just
arm ids) with their neighbours. We follow the setting intro-
duced in [11, 3] where agents may only communicate arm
ids. In recent work, [1] introduced a method for achieving
minimax optimal regret in this setting.
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In this work, we consider a different direction and intro-
duce an algorithm (Algorithm 1) which achieves asymptot-
ically optimal instance-dependent regret in the distributed
setting (Theorem 3.1). This leads to the surprising conclu-
sion that, in the asymptotic regime, it is possible to perform
on a par with algorithms with access to unlimited commu-
nication, whilst maintaining the communication constraints
of [3, 11]. We also present empirical results demonstrating
performance on simulated data (Figures 1, 2).

2. SETTING AND ALGORITHM
We now present our problem setting and algorithm. There

are N agents, T time steps, and K arms. Let Xn
k,s ∈ {0, 1}

denote the reward that agent n ∈ [N ] receives by playing
arm k ∈ [K] for the sth time. We assume that these are
i.i.d. Bernoulli(µk) random variables. Let k∗ ∈ argmaxµk
and let µ∗ := µk∗ = maxk∈[K] µk. We assume throughout
that there is a unique best arm, so k∗ is uniquely defined.

Communication between agents is constrained by a strictly
increasing sequence (Aj)j∈N and an N ×N probability ma-
trix P as follows. The time horizon [T ] is partitioned into
phases, with phase j consisting of time steps t for which
Aj−1 < t ≤ Aj where A0 := 0. Communication between
agents only occurs once a phase, on time steps Aj . On this
time step agents request a message from their neighbours.
The communicating agent is selected randomly according to
P , with P (n, q) denoting the probability that agent n will
receive a message from agent q at the end of each phase j.
We let Q ≡ Qnj ∼ P (n, ·) be the random variable corre-
sponding to the agent who sends a message to agent n at
the end of phase j. This message must take the form of an
arm recommendation Ojn, taking values in [K].

Let Int ∈ [K] denote the random variable which specifies
the index of the arm played by agent n in round t. This
must be a measurable function of an agent’s previous reward
history and the previous messages they have received. We let
V nk (t) :=

∑t
s=1 1{I

n
s = k} denote the number of times agent

n plays arm k in the first t rounds. Let Xn(t) := Xn
Int ,V

n
k

(t)

denote the reward received by agent n in round t.
The goal of each agent n ∈ [N ] is to minimise their ex-

pected regret,

RnT := T · µ∗ −
∑
t∈[T ]

E[Xn(t)].

Our algorithm (Algorithm 1) is based on the Gossip-Insert-
Eliminate algorithm of [3]. Let {Sn◦ }n∈[N ] be an arbitrary
partition of the set of arms [K]. We assume that each agent
n is aware of Sn◦ , its own set of arms within the parti-



tion, a priori. In each phase j, agent n will consider arms
from a set Snj ⊇ Sn◦ . Let µ̂nk,s := 1

s

∑s
i=1 X

n
k,i. Denote by

µ̂nk (t) := µ̂nk,V n
k

(t) the mean reward obtained by agent n from

arm k in the first t time steps.
We let Mn

j denote the most played arm by agent n in
phase j so Mn

j ∈ argmaxk∈[K]{V nk (Aj) − V nk (Aj−1)}. Fol-
lowing [3], when an agent q ∈ [N ] is asked for an arm rec-
ommendation at the end of phase j, its recommendation
will be its most played arm for that phase. Hence, when
Q ≡ Qnj ∼ P (n, ·) communicates with agent n ∈ [N ] at the

end of phase j, the recommendation will be Ojn = MQ
j .

Algorithm 1 makes two modifications to GoIE from [3].
Firstly, we use tighter KL based confidence intervals, fol-
lowing [5]. Secondly, we use a more efficient elimination
scheme. To define our KL upper confidence bounds we first
let d : [0, 1]2 → R be the Kullback–Leibler divergence for
two Bernoulli random variables and introduce a function
fα(t) = 1 + tα log2(t) indexed by α. The upper confidence
bound for arm k at agent n at time t is defined by

Un
k,α(t−1) := max

{
u ∈ [0, 1] : d(µ̂nk (t− 1), u) ≤ log(fα(t))

V nk (t− 1)

}
when V nk (t−1) > 0 and Un

k (t−1) :=∞ otherwise. When α is
clear from context we suppress it for notational convenience.

Algorithm 1: Asymptotically Optimal Gossiping
Bandits (AOGB)

1 j ← 1 and Sn1 ← Sn◦
2 for t ∈ N do
3 Int ← argmaxk∈Snj

Un
k,α(t− 1)

4 if t == Aj then

5 Q← P (i, ·) and Onj = MQ
j

6 Snj+1 ← Sn◦ ∪ {Onj ,Mn
j }

7 j ← j + 1

8 end

9 end

3. REGRET BOUND
We now present our asymptotically optimal regret bound

for Algorithm 1.

Theorem 3.1. Suppose that P has a strongly connected
graph and there exist C ≥ 1, θ > 0 such that C−1jθ ≤
Aj − Aj−1 ≤ Cjθ for all j ∈ N. Suppose that all agents
select arms with Algorithm 1 with α = 1. Then for each
agent n ∈ [N ] we have the asymptotic bound

lim sup
T→∞

RnT
log T

≤
∑

k∈Sn◦ \[k∗]

µ∗ − µk
d(µk, µ∗)

.

Note that by summing over the regrets of the different
agents the regret bound above matches the lower bound for
the full communication setting implied by [7].

The proof of Theorem 3.1 hinges upon a random time τ̂
which corresponds to the phase after which all of the active
sets Snj become fixed. After this random time all of the ac-
tive sets become Sn◦ ∪ {k∗}, which leads to an asymptotic
regret bound for agent n governed by the relationship be-
tween µk and µ∗ for k ∈ [K]. The crucial difficulty then is

to bound E[Aτ̂ ], the expected time until the end of phase τ̂ .
To bound E[Aτ̂ ] we show that, provided the phase lengths
Aj − Aj−1 are sufficiently large in relationship to the gap,
the probability of a sub-optimal arm being the most played,
and subsequently being recommended decays exponentially.

4. NUMERICAL RESULTS
Here we will compare algorithm 1 and the GosInE algo-

rithm on a range of synthetic data. We trial variants of
both of these algorithms using sub-gaussian and KL upper
confidence bounds. For GosInE, the sub-gaussian and KL
variants are respectively labelled UCB-GIE and KLUCB-
GIE and for algorithm 1, they are labelled GIE-FE (Gossip-
Insert-Eliminate with Fast Elimination) and AOGB.

All the experiments are run with N = 20 nodes, K = 50
arms and phases growing cubically, i.e., Aj = j3. Each ex-
periment consists of 100 independent runs, and in each run
the regret is averaged over the nodes. In each experiment,
the algorithms encounter the same reward sequence. The
first two experiments assume the agents are connected via
a complete graph, while the third experiment compares dif-
ferent graphs. We compute the regret over a time horizon of
T = 100, 000 and plot the mean along with 95% confidence
intervals.
Choice of α: We begin by comparing algorithm 1 and Go-
sInE for the two different types of upper confidence bounds
by varying the exploration function f(t) = 1 + tα log2(t)
by choosing different values for α. From figure 1 we identify

Figure 1: Regret for different choices of α with
µ∗ = 0.9 and the rest of the arms divide the interval
[0.2, 0.8] uniformly.

that algorithm 1 and GosInE perform better when equipped
with KL upper confidence bound. Additionally, algorithm 1
outperforms GosInE when they are both equipped with the
same upper confidence bounds. Overall, performance is bet-
ter for the smaller values of α and regret is minimised some-
where in the region α ≤ 1. This implies that there may
be more practical choices for fα(t) than the asymptotically
optimal choice at α = 1.
∆min vs Regret: Now we consider the affect of changing
the sub-optimality gap ∆min. This is the difference between
the mean of the best arm and the second best arm. Fig-
ure 2 compares algorithm 1 and the GosInE algorithm for
both types of confidence intervals. Similarly to the previous
experiment, we observe that both algorithms perform bet-
ter when equipped with the KL upper confidence bounds



Figure 2: Regret for different choices of ∆min with
α = 1. The best arm has mean µ? = 0.9 and the
rest of the arms divide the interval [0.9 − ∆min, 0.2]
uniformly.

and that algorithm 1 typically outperforms GosInE on aver-
age when they are equipped with the same upper confidence
bounds.
Network Configurations: Here, we compare three dif-
ferent network configurations for agents implementing algo-
rithm 1: a complete graph, a cycle graph and a star graph.

Figure 3: Regret over time for three different net-
works. Each in case we consider α = 1, ∆min = 0.1
and the means of the remaining arms divide the in-
terval [0.8, 0.2] uniformly.

The results in figure 3 show that the cycle graph per-
forms slightly worse than the complete graph but the star
graph struggles significantly along with a larger variance.
In essence, this is because the best arm needs to spread to
centre of the star before it can spread to all of the other
nodes.

5. DISCUSSION
In this paper we presented an algorithm (Algorithm 1)

for multi-agent bandits in a decentralised setting. Our al-
gorithm builds upon the Gossip-Insert-Eliminate algorithm
of [3] by making two modifications. First, we use tighter
confidence intervals inspired by [5]. Second, we use a faster
elimination scheme for reducing the number of arms that
must be explored by an agent. Both modifications yield

significant empirical improvement on simulated data (Fig-
ure 2). Finally, we prove a regret bound (Theorem 3.1)
which demonstrates asymptotically optimal performance of
our algorithm, matching the asymptotic performance of a
collection of agents with unlimited communication.

There is substantial scope for future work in this direction.
One challenge of great practical importance is the develop-
ment of distributed algorithms which are robust to both
malicious agents and faulty communication [9]. An interest-
ing theoretical challenge is to develop a multi-agent bandit
algorithm which is both asymptotically optimal and nearly
minimax optimal with limited communication. In very re-
cent work of [1] an algorithm has been proposed which is
minimax optimal in the distributed setting, and it would be
interesting to synthesise this with the insights provided in
the current paper.
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7. APPENDIX I: PROOF OF THE ASYMPTOTIC REGRET BOUND
In this section we present the proof of Theorem 3.1. Throughout we restrict our attention to Algorithm 1 with α = 1 and

let f(t) := 1 + t log2(t). For each k ∈ [K] we let ∆k := µk∗ − µk and define ∆min := mink∈[K]\{k∗}∆k > 0.
Next we recall some useful results from the bandit literature adapted to our setting. For each ε ∈ (0,∆min) and n ∈ [N ] we

define a random variable

κnε := min

{
t ∈ N : max

s∈[T ]

(
d
(
µ̂nk∗,s, µ∗ − ε

)
− log(f(t))

s

)
≤ 0

}
,

where d(p, q) := d(p, q) · 1{p ≤ q}.

Lemma 7.1. For ε ∈ (0,∆min), maxn∈[N ] E[κnε ] ≤ 2/ε2.

Proof. See [8, Lemma 10.7].

Next we define for each ε ∈ (0,∆min), n ∈ [N ], k ∈ [K]\[k∗],

νnε,k :=

T∑
s=1

1

{
d(µ̂nk,s, µ∗ − ε) ≤

log(f(T ))

s

}
.

Lemma 7.2. For ε ∈ (0,∆min), and n ∈ [N ] we have

E[νnε,k] ≤ inf
ε̃∈(0,∆k−ε)

(
log f(T )

d(µk + ε̃, µ∗ − ε)
+

1

2ε̃2

)
.

Proof. See [8, Lemma 10.8].

Let κn◦ := κn∆min/2
and for each agent n ∈ [N ] and phase j we define a Boolean random variable χnj := 1{k∗ ∈ Snj , Mn

j 6=
k∗, Aj−1 ≥ κn◦}. For each n ∈ [N ] we define

τ̂nstab := min{j ∈ N : Aj−1 ≥ κn◦ , ∀j′ ≥ j, χnj′ = 0}
τ̂stab := max

n∈[N ]
τ̂nstab

τ̂nspr := min{j ≥ τ̂stab : k∗ ∈ Snj } − τ̂stab

τ̂spr := max
n∈[N ]

τ̂nspr

τ̂ := τ̂stab + τ̂spr.

Lemma 7.3. For all phases j > τ̂ and all n ∈ [N ] we have Snj = Sn◦ ∪ {k∗}.

Proof. For each n ∈ [N ] we see by induction that for all j ≥ τ̂nspr + τ̂stab we have Mn
j = k∗ ∈ Snj . Moreover, since

Snj+1 = Sn◦ ∪ {Mn
j ,M

Q
j } for some Q in [N ] it follows that Snj+1 = Sn◦ ∪ {k∗}, for all j ≥ τ̂ = τ̂stab + τ̂spr.

Lemma 7.4. For each n ∈ [N ] and k ∈ [K]\{k∗} we have

T∑
t=Aτ̂+1

1 {Int = k} ≤

{
infε∈(0,∆min)

{
νnε,k + κnε

}
if k ∈ Sn◦

0 if k /∈ Sn◦ .

Proof. By Lemma 7.3 First note that by Lemma 7.3 we have Snj = Sn◦ {k∗} for all j > τ̂ . In particular, this means
that Int /∈ Sn◦ ∪ {k∗} cannot occur for t ≥ Aτ̂ + 1. Now take ε ∈ (0,∆min) and consider k ∈ Sn◦ \[k∗]. If Int = k for some
t ≥ (Aτ̂ + 1) ∨ κnε then we must have Un

k (t− 1) ≥ Un
k∗(t− 1) ≥ µ∗ − ε, and hence,

d(µ̂nk,V n
k

(t−1), µ∗ − ε) ≤
log(f(t))

V nk (t− 1)
≤ log(f(T ))

V nk (t− 1)
,

and V nk (t) = V nk (t − 1) + 1. Consequently,
∑T
t=(Aτ̂+1)∨κnε

1 {Int = k} ≤ νnε,k. The result follows by taking an infimum over

ε ∈ (0,∆min).

This leads to the following regret bound.

Corollary 7.5. For each n ∈ [N ], we have E[RnT ] ≤ E[Aτ̂ ] +
∑
k∈Sn◦ \[k∗]

∆k inf
ε∈
(
0,

∆min
2

) { log f(T )
d(µk+ε,µ∗−ε) + 3

ε2

}
.

Proof. This follows from Lemmas 7.1, 7.2 and 7.4.

For the remainder of the proof we must show that E[Aτ̂ ] may be bounded independently of T .

Lemma 7.6. For j ∈ N s.t. Aj −Aj−1 ≥ 8
∆2

(
K
N

+ 3
)

log f(Aj), we have E[χnj ] ≤ 8K
∆2

min
exp

(
−∆2

min(Aj−Aj−1)

16(K/N+3)

)
.



Proof. First observe that if χnj = 1 then k∗ ∈ Snj , Aj−1 ≥ κn◦ and Mn
j 6= k∗. Since Mn

j 6= k∗ we deduce that for some
k ∈ [K]\{k∗} we have

V nk (Aj)− V nk (Aj−1) ≥ Aj −Aj−1

|Snj |
≥ Aj −Aj−1

K/N + 3
,

and so for some Aj−1 < t ≤ Aj we have s = V nk (t − 1) ≥ Aj−Aj−1

K/N+3
− 1 and Int = k, so Un

k (t − 1) ≥ Un
k∗(t − 1) as k∗ ∈ Snj .

Since t ≥ Aj−1 ≥ κn◦ we deduce that Un
k (t− 1) ≥ Un

k∗(t− 1) ≥ µ∗ −∆min/2. Hence, by Pinsker’s inequality

2

(
µ̂nk,s − µ∗ +

∆min

2

)2

= 2

(
µ̂nk (t− 1)− µ∗ +

∆min

2

)2

≤ d
(
µ̂nk (t− 1), µ∗ −

∆min

2

)
≤ log(fα(t))

V nk (t− 1)
≤ log f(Aj)

s
.

Thus, for some k ∈ [K]\{k∗} and s ≥ Aj−Aj−1

K/N+3
− 1,

µ̂nk,s ≥ µ∗ −
∆min

2
−
√

log f(Aj)

2s
≥ µk +

∆min

2
−
√

log f(Aj)

2s
≥ µk +

∆min

4
,

since Aj −Aj−1 ≥ 8
∆2

(
K
N

+ 3
)

log f(Aj). Thus, by Hoeffding’s inequality we have

E[χnj ] ≤
∑

k∈[K]\{k∗}

∑
s≥

Aj−Aj−1
K/N+3

−1

P
[
µ̂nk,s ≥ µk +

∆min

4

]

≤ (K − 1)
∑

s≥
Aj−Aj−1
K/N+3

−1

exp

(
−s∆

2
min

8

)

≤ K
∫ ∞
Aj−Aj−1
K/N+3

−2

exp

(
−s∆

2
min

8

)
ds

≤ 8K

∆2
min

exp

(
−∆2

min(Aj −Aj−1)

16(K/N + 3)

)
.

In what follows we let pmin := min
(
{P (i, j)}(i,j)∈[N ]2\{0}

)
and diam(P ) denote the maximum length of a directed path

between two distinct nodes corresponding to the graph induced by P . We note that diam(P ) < ∞ if and only if P has a
strongly connected graph.

Lemma 7.7. Suppose that P has a strongly connected graph. Then for ξ ∈ N, P(τ̂spr ≥ ξ) ≤ N(1− pdiam(P )
min )

⌊
ξ

2diam(P )
−1
⌋
.

Proof. Fix n ∈ [N ] and choose a sequence (`i)i∈[q]∪{0} ∈ [K]q with q ≤ diam(P ) and such that `0 = k∗, `q = n and
P (`i, `i−1) > 0 for each i ∈ [q]. Note that the definition of diam(P ) entails the existence of at least one such a sequence.
Recall that we let Qñj denote the node which sends a message to agent ñ and the end of phase j. Let m = bξ/(2q) − 1c
and observe that if for some j0 ∈ {τ̂stab, . . . , τ̂stab + 2mq} we have Q

`j−j0
j = `j−j0−1 for j ∈ {j0 + 1, . . . , j0 + q} then

τ̂nspr + τ̂stab ≤ j0 + q < ξ + τ̂stab, so . Hence, we have

P(τ̂nspr ≥ ξ) ≤ P

 ⋂
j0−τ̂stab∈{0,2q,...,2mq}

⋃
j∈{j0+1,...,j0+q}

{
Q
`j−j0
j 6= `j−j0−1

}
=

∏
j0−τ̂stab∈{0,2q,...,2mq}

P

 ⋃
j∈{j0+1,...,j0+q}

{
Q
`j−j0
j 6= `j−j0−1

}
=

∏
j0−τ̂stab∈{0,2q,...,2mq}

1− P

 ⋂
j∈{j0+1,...,j0+q}

{
Q
`j−j0
j = `j−j0−1

}
=

∏
j0−τ̂stab∈{0,2q,...,2mq}

1−
∏

j∈{j0+1,...,j0+q}

P
(
Q
`j−j0
j = `j−j0−1

)
≤ (1− pqmin)m ≤ (1− pdiam(P )

min )

⌊
ξ

2diam(P )
−1
⌋
.

The lemma now follows by the union bound over [N ].

Lemma 7.8. Suppose that there exist C ≥ 1, θ > 0 such that C−1jθ ≤ Aj − Aj−1 ≤ Cjθ for all j ∈ N. Then we have
C−1j1+θ ≤ Aj ≤ C(1 + j)1+θ for all j ∈ N.



Now define j(∆min) ∈ N by

j(∆min) := 1 + max

(
{0} ∪

{
j ∈ N : jθ <

8C

∆2
min

(
K

N
+ 3

)
log f

(
C(1 + j)θ

)})
.

Note that j(∆min) is always finite since f(t) = O(log t).

Lemma 7.9. Suppose that there exist C ≥ 1, θ > 0 such that C−1jθ ≤ Aj − Aj−1 ≤ Cjθ for all j ∈ N. Then for all
ξ ≥ j(∆min) we have

P(τ̂stab ≥ ξ) ≤
∑
n∈[N ]

P(κn◦ > C−1(ξ − 2)1+θ) +
8KN

∆2
min

∑
j≥ξ

exp

(
− ∆2

minj
θ

16C(K/N + 3)

)
.

Proof. Fix n ∈ [N ] and suppose that τ̂nstab ≥ ξ. Since τ̂nstab := min{j ∈ N : Aj−1 ≥ κn◦ , ∀j′ ≥ j, χnj′ = 0} it follows that
either Aξ−2 < κn◦ or χnj = 1 for some j ≥ ξ. Note also that by the upper bound in Lemma 7.8 for j ≥ ξ ≥ j(∆min) we have

Aj −Aj−1 ≥ C−1jθ ≥ 8

∆2
min

(
K

N
+ 3

)
log f

(
C(1 + j)θ

)
≥ 8

∆2

(
K

N
+ 3

)
log f(Aj).

Hence, by Lemmas 7.6 and the lower bound in 7.8 we have

P(τ̂nstab ≥ ξ) ≤ P(Aξ−2 < κn◦ ) +
∑
j≥ξ

E[χnj ]

≤ P(κn◦ > C−1(ξ − 2)1+θ) +
8K

∆2
min

∑
j≥ξ

exp

(
−∆2

min(Aj −Aj−1)

16(K/N + 3)

)

≤ P(κn◦ > C−1(ξ − 2)1+θ) +
8K

∆2
min

∑
j≥ξ

exp

(
− ∆2

minj
θ

16C(K/N + 3)

)

≤ P(κn◦ > C−1(ξ − 2)1+θ) +
8K

∆2
min

∫
z≥ξ−1

exp

(
− ∆2

minz
θ

16C(K/N + 3)

)
dz.

Once again conclusion of the lemma follows by union bounding over n ∈ [N ].

Proposition 7.10. Suppose that there exist C ≥ 1, θ > 0 such that C−1jθ ≤ Aj − Aj−1 ≤ Cjθ for all j ∈ N. Then
there exists a constant φ ≡ φ(∆min, C, θ,N,K, pmin, diam(P )) depending on ∆min, C, θ,N,K, pmin,diam(P ) but not T such
that E[Aτ ] ≤ φ.

Proof. Given Aτ̂ ≥ ζ ≥ C(1 + 2j(∆min))1+θ ∨C · {16diam(P )}1+θ then τ̂ ≥ (ζ/C)
1

1+θ − 1, so τ̂spr ∨ τ̂stab ≥ {(ζ/C)
1

1+θ −
1}/2 ≥ j(∆min). Hence, for ζ ≥ ψ ≡ ψ(∆min, C, θ) := C(1 + 2j(∆min))1+θ ∨ C{16diam(P )}1+θ,

P(Aτ̂ ≥ ζ) ≤ P
(
τ̂spr ≥

1

2
{(ζ/C)

1
1+θ − 1}

)
+ P

(
τ̂stab ≥

1

2
{(ζ/C)

1
1+θ − 1}

)

≤ N(1− pdiam(P )
min )

⌊
(ζ/C)

1
1+θ

4diam(P )
−2
⌋

+
8KN

∆2
min

∫
z≥(ζ/C)

1
1+θ /2−2

exp

(
− ∆2

minz
θ

16C(K/N + 3)

)
dz

+
∑
n∈[N ]

P(κn◦ > {(ζ/C)
1

1+θ /2− 4}1+θ/C)

≤ N(1− pdiam(P )
min )

(ζ/C)
1

1+θ

24diam(P ) +
8KN

∆2
min

∫
z≥(ζ/C)

1
1+θ /2−2

exp

(
− ∆2

minz
θ

16C(K/N + 3)

)
dz

+
∑
n∈N

P(κn◦ > (21+θC)−2 · ζ).

Note also that by Lemma 7.1 we have

∑
n∈N

∑
ζ∈N

P(κn◦ > (21+θC)−2 · ζ) =
∑
n∈N

∑
ζ∈N

P((21+θC)2κn◦ > ·ζ) = (21+θC)2
∑
n∈N

E[kn◦ ] ≤ 8N

∆2
min

.



Hence, we have

E[Aτ̂ ] ≤ ψ +
∑
ζ>ψ

P(Aτ̂ ≥ ζ)

≤ ψ +
∑
ζ>ψ

N(1− pdiam(P )
min )

(ζ/C)
1

1+θ

24diam(P ) +
8K

∆2
min

∫
z≥(ζ/C)

1
1+θ /2−2

exp

(
− ∆2

minz
θ

16C(K/N + 3)

)
dz


+
∑
n∈[N ]

∑
ζ≥ψ

P(κn◦ > (21+θC)−2 · ζ) =: φ(∆min, C, θ,N,K, pmin, diam(P )) <∞,

for a finite constant φ ≡ φ(∆min, C, θ,N,K, pmin, diam(P )) depending on ∆min, C, θ,N,K, pmin, diam(P ) but not T .

We can now complete the proof of the main result.

Proof of Theorem 3.1. The result follows from Corollary 7.5 combined with Proposition 7.10 by taking ε→ 0.


