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EXTENDED ABSTRACT

Reinforcement learning (RL) is a framework for directly estimating the parameters of a controller through repeated
interaction with the environment, and has gained attention for its ability to alleviate the need for a physically exact
model across a number of domains, such as robotic manipulation [12], web services [31], and various games [25].
In RL, an agent in a given state takes an action, and transits to another according to a Markov transition density,
whereby a reward informing the merit of the action is revealed by the environment. Mathematically, this setting may
be encapsulated by a Markov Decision Process (MDP) [23], in which the one seeks to select the action sequence to
maximize the long-term accumulation of rewards.

In many domains, multiple agents interact in order to obtain favorable outcomes, as in finance [17], social networks
[9], and games [27]. In multi-agent RL (MARL) and more generally, stochastic games, a key question is the payoff
structure [2]. We focus on common payoffs among agents, i.e., the utility of the team is the sum of local utilities [4], which
contrasts with competitive settings where one agent’s gain is another’s loss, or combinations thereof [18]. Whereas
typically cooperative MARL defines the global utility as the average over agents’ local reward accumulations, here
we define a new mechanism for cooperation that permits agents to incorporate risk-sensitivity [3, 22], prior experience
[1], or exploration [8]. The usual common-payoff setting focuses on global cumulative return of rewards, which is a
linear function of the the state-action occupancy measure. By contrast, the aforementioned decision-making goals
define nonlinear functions of the state-action occupancy measure [10]. Such functions, we call general utilities, have
recently yielded impressive performance in practice via prioritizing exploration [7], risk-sensitivity [21], and prior
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Objective Approach Convergence

Cumulative Return Value-Based [6, 11, 15, 24, 28] X 


This
Work

!
Policy-Based [5, 30] X

Risk [21] ✗

Exploration [7, 20] ✗

Priors [14, 16] ✗

Table 1. Cumulative Returns, Risk-Sensitivity, Exploration, and the incorporation of Priors are common goals in MARL, and subsumed by the general utilities considered
here. We focus on the setting when agents are cooperative and transition according to a common global dynamics model [4]. We defer a discussion of centralized training
decentralized execution (CTDE), partial observability, and different transition models to appendices, with the understanding that our focus is on decentralized training under
full observability. The respective technical settings of [7, 14, 16, 20, 21] are different; their inclusion here is to underscore their use of goals beyond cumulative return, which
is given a conceptual underpinning for the first time in this work.

experience [16]. To date, however, there exists few formal guarantees for algorithms designed to optimize general
utilities in multi-agent settings, to the best of our knowledge.

This gap motivates us to put forth the first decentralized MARL scheme for general utilities, and establish its
consistency and sample complexity. Our approach hinges upon first noting that the embarking point for most RL
methodologies is the Policy Gradient Theorem [26] or Bellman’s equation, both of which break down for general
utilities. One potential path forward is a recent generalization of the PG Theorem for general utilities [29], which
expresses the gradient as product of the partial derivative of the utility with respect to the occupancy measure, and
the occupancy measure with respect to the policy. However, in the team setting, this later factor is a global nonlinear
function of agents’ policies, and hence does not permit decentralization. Thus, we define an agent’s local occupancy
measure as the joint occupancy measure of all agents’ polices with all others’ marginalized out, and its local general
utility as any (not-necessarily concave) function of its marginal occupancy measure. The team objective, then, is the
global aggregation of all local utilities.

From this definition, we derive a new variant of the Policy Gradient where each agent estimate its policy gradient based
on local information and message passing with neighbors. Specifically, we derive a model-free algorithm, Decentralized
Shadow Reward Actor-Critic (DSAC), that generalizes multi-agent actor-critic (see [13]) beyond cumulative return [30].
Each agent’s procedure follows four stages: (i) a marginalized occupancy measure estimation step used to evaluate the
instantaneous gradient of the local utility with respect to the occupancy measure, which we dub the “shadow reward";
(ii) accumulate “shadow rewards" along a trajectory to estimate “shadow" critic parameters (critic); (iii) average critic
parameters with those of its neighbors (information mixing); and (iv) a stochastic policy gradient ascent step along
trajectories (actor).

Contributions. Overall, our contributions are:
• present the first MARL formulation for broader goals than the cumulative return and specialization among
agents’ roles;
• derive a variant of multi-agent actor-critic to solve this problem that employs an occupancy measure estimation
step to construct the gradient of the general utility with respect to the occupancy measure, which serves as a
“shadow reward" for the critic step;
• for ϵ-stationarity with high probability, we respectively establish that DSAC requires O (1/ϵ2.5) and O (1/ϵ2)
steps if agents exchange information onceor multiple times per policy update. Under proper assumptions, we
further establish the convergence to the globally optimal policy under diminishing step-sizes.
• provide experimental evaluation for exploration maximization and safe navigation in cooperative settings [19].
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