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1 EXTENDED ABSTRACT
The modeling and optimization of networked systems such as wireless communication networks

and traffic networks is a long-standing challenge. Typically analytic models must make numerous

assumptions to obtain tractable models as a result of the complexity of the systems, which include

many unknown, or unmodeled dynamics. Given the success of Reinforcement Learning (RL) in a

wide array of domains, it has emerged as a promising tool for tackling the complexity of networked

systems. However, when seeking to use RL in the context of the control and optimization of large-

scale networked systems, scalability quickly becomes an issue. The goal of this paper is to develop

scalable multi-agent RL for networked systems.

Motivated by real-world networked systems like wireless communication, epidemics and traffic,

we considier a RL model of 𝑛 agents with local interaction structure. Specifically, each agent 𝑖

has local state 𝑠𝑖 , local action 𝑎𝑖 and the agents are associated with an underlying dependence

graph G and interact locally, i.e, the distribution of 𝑠𝑖 (𝑡 + 1) only depends on the current states

of the local neighborhood of 𝑖 as well as the local 𝑎𝑖 (𝑡). Further, each agent is associated with

stage reward 𝑟𝑖 that is a function of 𝑠𝑖 , 𝑎𝑖 , and the global stage reward is the average of 𝑟𝑖 . In this

setting, the design goal is to find a decision policy that maximizes the (discounted) global reward.

This setting captures a wide range of applications, e.g. epidemics [9], social networks [4], wireless

communication networks [13].

A fundamental difficulty when applying RL to such networked systems is that, even if individual

state and action spaces are small, the entire state profile (𝑠1, . . . , 𝑠𝑛) and the action profile (𝑎1, . . . , 𝑎𝑛)
can take values from a set of size exponentially large in 𝑛. This “curse of dimensionality” renders

the problem unscalable. For example, most RL algorithms such as temporal difference (TD) learning

or 𝑄-learning require storage of a 𝑄-function [1] whose size is the same as the state-action space,

which is exponentially large in 𝑛. Such scalability issues have indeed been observed in previous

research on variants of the problem we study, e.g. in multi-agent RL [3, 8] and factored Markov

Decision Proccess (MDP) [6, 7]. A variety of approaches have been proposed to manage this issue,

e.g. the idea of “independent learners” in [5, 11]; or function approximation schemes [12]. However,

such approaches lack rigorous optimality guarantees. In fact, it has been suggested that such MDPs

with exponentially large state spaces may be fundamentally intractable, e.g., see [2].

In addition to the scalability issue, another challenge is that, even if an optimal policy that maps a

global state (𝑠1, . . . , 𝑠𝑛) profile to a global action (𝑎1, . . . , 𝑎𝑛) can be found, it is usually impractical to

implement such a policy for real-world networked systems because of the limited information and

communication among agents. For example, in large scale networks, each agent 𝑖 may only be able

to to implement localized policies, where its action 𝑎𝑖 only depends on its own state 𝑠𝑖 . Designing

such localized polices with global network performance guarantee can also be challenging [10].

The challenges described above highlight the difficulty of applying RL to control large scale

networked systems; however, the network itself provides some structure, particularly the local

interaction structure, that can potentially be exploited. The question that motivates this paper
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is: Can the network structure be utilized to develop scalable RL algorithms that provably find a
(near-)optimal localized policy?

Contributions. In this work we propose a framework that exploits properties of the network

structure to develop RL to learn localized policies for large-scale networked systems in a scalable

manner. Specifically, our main result shows that our algorithm, Scalable Actor Critic (SAC), finds a

localized policy that is a𝑂 (𝜌𝜅+1)-approximation of a stationary point of the objective function, with

complexity that scales with the local state-action space size of the largest 𝜅-hop neighborhood. To

the best of our knowledge, our results are the first to provide such provable guarantee for scalable

RL of localized policies in multi-agent network settings.

The key technique underlying our results is we prove that, under the local interaction structure,

the 𝑄-function satisfies an exponential decay property, where the 𝑄-function’s dependence on far

away nodes shrink exponentially in their graph distance with rate 𝜌 ≤ 𝛾 , where 𝛾 is the discounting

factor. This leads to a tractable approximation of the𝑄-function. In particular, despite the𝑄-function

itself being intractable to compute due to the large state-action space size, we introduce a truncated
𝑄-function which only depends on a small spatial horizon, that can be computed efficiently and

can be used in an actor-critic framework which yields an 𝑂 (𝜌𝜅)-approximation. This technique

is novel and is a contribution in its own right. It can be used broadly to develop RL for network

settings beyond the specific actor-critic algorithm we propose in this paper.
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