
Stable Reinforcement Learning with Unbounded
State Space (Extended Abstract)

Devavrat Shah
EECS, MIT

devavrat@mit.edu

Qiaomin Xie
ORIE, Cornell University

qiaomin.xie@cornell.edu

Zhi Xu
EECS, MIT

zhixu@mit.edu

We consider the problem of reinforcement learning (RL) for controlling an unknown dynamical
system with an unbounded state space. Such problems are ubiquitous in various application domains,
as exemplified by scheduling for networked systems. As a paradigm for learning to control dynamical
systems, RL has a rich literature. In particular, algorithms for settings with finite, bounded or compact
state spaces have been well studied, with both classical asymptotic results and recent non-asymptotic
performance guarantees. However, literature on problems with unbounded state space is scarce, with
few exceptions such as linear quadratic regulator, where the structure of the dynamics is known.
Indeed, the unboundedness of the state space presents with new challenges for algorithm or policy
design, as well as analysis of policy in terms of quantifying the “goodness”.

Solutions that may not work. In traditional RL approaches, the policy is trained offline using finitely
many samples for a finite, bounded or compact state space and then it is deployed in the wild without
further changes. A natural adaption of such an approach is by restricting the RL policy to a finite
subset of the state space chosen appropriately or arbitrarily. Examples of such algorithms include
model-based methods such as UCRL/PSRL and model-free methods such as TD/Q-Learning/policy
gradient. However, even in simple queueing networks, the system will reach a state (i.e., queue
lengths) q not contained in the training data with non-zero probability. The estimate for q’s transition
probabilities and value function will remain at their initial/default values (say 0). With such an
uninformative estimate, the corresponding policy will be independent of the state q. And it is likely
that the policy may end up serving empty queue with a nonzero probability. This might cause the
queues to grow unboundedly with strictly positive probability. Clearly, more sophisticated approaches
to truncate systems are not going to help as they will suffer from a similar issue.

An alternative to truncation is to “compactify” the state space by mapping the unbounded space to
a bounded set. However, traditional RL approaches may also fall short for the reduced problem:
properties of the original problem that allow for efficient learning can be easily destroyed under the
mapping. Consider a simple example where the state space is S = (−∞,∞). Suppose that for the
original MDP, the optimal value function V ∗ that we wish to learn is L-Lipschitz. Consider a natural
mapping z = tanh s, which “compactifies” the unbounded space S to [−1, 1]. Using chain rule, we
have |∂V

∗

∂z | = |
∂V ∗

∂s ·
∂s
∂z | ∼L · |

1
1−z2 |. As the original state s approaches infinity, z approaches either

1 or −1, in which case the derivative becomes infinity, implying that the smoothness property is
completely lost. Therefore, it may not be possible to learn the function over the bounded set well with
finite samples. Such issues will be exaggerated in higher dimensions. In general, this kind of state
space compactification suffers similar issues as truncation: it necessarily discounts/skews large states,
which are exactly the states we care about when studying systems such as queueing networks. Indeed,
it is challenging to find a meaningful compactification map that preserves all the nice properties; thus
efficient learning in the “compactified” space is far from obvious if not impossible.

Another potential approach is to find “lower dimensional structure” through functional approximation,
e.g., by parametrizing the policy π within some function class (such as linear functions or neural
networks). For this approach to work, the function class must be expressive enough to contain a
stable policy. However, it is not at all clear, a priori, which parametric function class has this property.
This challenge is only exacerbated in more complicated systems. Although some approximation
architectures work well empirically, there is no rigorous performance guarantee in general.
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Challenges. To sum up, the traditional RL approaches for finite, bounded or compact state spaces
are not well suited for systems with unbounded state spaces. Approaches that rely on offline training
only are bound to fail as system will reach a state that is not observed in finitely many samples during
offline training and hence, there is no meaningful guidance from the policy. Therefore, to learn a
reasonable policy with an unbounded state space, the policy ought to be updated whenever a new
scenario is encountered. That is, unlike traditional RL, we need to consider online policies, i.e., one
that is continually updated upon incurring new scenarios.

Another challenge is in analyzing or quantifying “goodness” of such a policy. Traditionally, the
“goodness” of an RL policy is measured in terms of the error induced in approximating, for example,
the optimal value function over the entire state space; usually measured through ‖ · ‖∞ norm error
bound. Since the state space is unbounded, expecting a good approximation of the optimal value
function over the entire state space is not a meaningful measure. Therefore, we need an alternative to
quantify the “goodness” of a policy.

Questions of interest. In this work, we are interested in the following questions: (a) What is the
appropriate “goodness” of performance for a RL policy for unbounded state space? (b) Is there an
online, data-driven RL policy that achieves such “goodness”? and if so, (c) How does the number of
samples required per time-step scale?

Our contributions. Motivated by the above considerations, we consider discounted Markov decision
processes with an unbounded state space and a finite action space, under a generative model which
allows one to sample state transitions given any state-action pair.

Notion of Stability. As the main contribution, we introduce a notion of stability to quantify “goodness”
of a RL policy for unbounded state space inspired by the literature in queueing systems and control
theory. Informally, a RL policy is stable if the system dynamics under the policy returns to a finite,
bounded or compact subset of the system infinitely often — in the context of queueing networks, it
would imply that queues remain finite with probability 1. For applications where instability implies
unbounded cost, the notion of stability provides a meaningful notion of first-order optimality. Indeed,
further refined notions of performance beyond stability, such as diffusion-approximation or heavy
traffic analysis as typically considered in queueing systems would be natural next steps to consider.

Stable RL Policy. As a proof of concept, we present a simple RL policy using a Sparse Sampling
Monte Carlo Oracle that is stable for any MDP, as long as the optimal policy respects a Lyapunov
function with drift condition. Our policy does not require knowledge of or access to such a Lyapunov
function. It recommends an action at each time using finitely many simulations of the MDP through
the oracle. That is, the policy is online and guarantees stability for each trajectory starting without any

prior training. The number of samples required at each time step scales as O
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where −α < 0 is the drift in Lyapunov function. To the best of our knowledge, this is the first online
RL policy that is stable for generic MDP with unbounded state space.

Sample Efficient Stable RL Policy. To further improve the sample efficiency, for MDPs with Lipschitz
optimal value function, we propose a modified Sparse Sampling Monte Carlo Oracle for which
the number of samples required at each time step scales as O

(
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)
, where d is the

dimension of the state space. That is, the sample complexity becomes polynomial in 1/α from
being super-polynomial with the vanilla oracle. The efficient oracle utilizes the minimal structure of
smoothness in the optimal value function and should be of interest in its own right, as it provides
sample complexity improvement for all policies in literature where such an oracle plays a key role.

Adaptive Algorithm Based on a Statistical Test. While the algorithm does not require knowing
the Lyapunov function itself, it does have a parameter whose optimal value depends on the drift
parameter of the Lyapunov function. Therefore, we further develop an adaptive, agnostic version
of our algorithm that automatically searches for an appropriate tuning parameter. We establish that
either this algorithm discovers the right value and hence ensures stability, or the system is near-stable
in the sense that ||st||/ log2 t = O(1) as t→∞. The near-stability is a form of sub-linear regret. For
example, in the context of a queueing system, this would correspond to queues growing as O(log2 t)
with time in contrast to O(1) queues for stable (or optimal) policy. Further, the sub-linear growth of
queue lengths implies “rate” stability — to the best of our knowledge, this is first such general RL
policy for generic queueing systems with such a property.
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